QUESTION BANK

MATHS I TITLE :CALCULUS II **CLASS: FYBSC** Q 1 The value of 1 (a) 1/3 (b)1 (c) 3/4(d)0Ans : 3/4 2 The value of 1 (a) 6 (b)3(c) 4 (d)0Ans: 6 3 If $f(x) = (\tan x)/x$, for $x \neq 0$ then $\lim x \rightarrow 0$ f(x)1 (a) 1 (b)0(c) (d) - 1Ans (a) Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \begin{cases} x, & \text{if } x < 0 \\ e^x, & \text{if } x \ge 0 \end{cases}$ then $\lim_{x \to 0^+} f(x)$ is 4 (a)0(b)1 (c) e (d) Does not exist Ans (b) -1 1 The value of $\lim x \to 0$ 5 2 (a) -1 (b)1 (c)0(d) Does not exist Ans : (d)

If
$$f(x) = \begin{cases} 2x+1 & \text{for } x < 0\\ x-1 & \text{for } x \ge 0 \end{cases}$$
 then $x = 0$ is a point at which the function f is

1

(a) Continuous (b) Discontinuous (c) Decreasing (d) Does not exist $F(x) = x^4 + x^2$, xR is 7 1 (a) Continuous (b) Continous only if x>0(c) Discontinous (d) Always negative Ans: (a) 8 The value of where 0 < x < 1/5(a) 1 (b)0(c) - 1(d) 1/5Ans (b) 9 2 The function f(x) = |x - 2| + 3, $x \in R$ is (a) discontinuous at x = 3. (b) discontinuous at x = 2. (c) continuous everywhere in R. (d) discontinous everywhere in R Ans© 10 The function f : R \rightarrow R, f(x) = 2x² - 8 1 (a) is continuous at x in R (b) Discontinuous at x=2(c) Discontinuous at x = 8(d) Discontinuous in R Ans (a) 11 3 Let $f(x) = \begin{cases} 2x+4 & \text{if } x < 4\\ 3b & \text{if } x \ge 4. \end{cases}$. If f is continuous on \mathbb{R} then the value of Y is (a) 2 (b)4(c)3(d)6Ans (b) 4 If f: RR, and f(x) = 9 then $\lim x4 f(x) =$ 1 12 (a) 4 (b)9 (c) 36 (d) 13 (b)13 Consider f, g : $R \rightarrow R$ and $c \in R$. Under which of the following condition 1

```
does \lim x \to c f(x)g(x) = 0 is true
           (a) \lim x \to c f(x)=0
           (b) Lim x \rightarrow c f(x) = L and L \neq 0 and g(x) is bounded
           (c) \lim x \to c g(x) = L and f(x) is bounded
           (d) Lim x\rightarrowc f(x) =L and Lim x\rightarrowc g(x) = 1/L, L 0
       Ans: (a)
14
       \lim x \to \pi/4 \tan x =
                                                                                                       1
           (a) 1
           (b)\frac{1}{2}
           (c) 1/
           (d)0
       Ans (a)
       \lim x \rightarrow 0
                      x^2sin() =
15
                                                                                                       1
           (a) 0
           (b)1
           (c) \pi/2
           (d) does not exist
An
       (b)
S
16
       \lim x \rightarrow \pi/2 e<sup>cos x</sup> =
                                                                                                       1
           (a) e
           (b)0
           (c) 1
           (d)Not defined
       Ans ©
17
        \cos (\log (x^2-2x+2 + \sin(2x-2))) =
                                                                                                       1
           (a)0
           (b)\pi/2
           (c) 1
           (d) Does not exist
       Ans: (c)
        e^{(x+\sin x-\cos x)} =
18
           (a) 1
           (b)e
           (c) 1/e
           (d) Does not exist
       Ans: (c)
                                                                                                       1
19
                                                                                                       1
       If f(x)=L and M, =
           (a) L/M
           (b) M/L
```

```
(c) L
(d)M
```

20

Ans: (a) 2 (a) Only at x = 0(b) at every $x \in R$ (c) on $\mathbb{R} \setminus \{0\}$ (d) no where Ans: (d)21 Amongst the following, the false statement is — 3 (a) There exists a function $f: R \rightarrow R$, which is discontinuous only at one point. (b) There exists a function $f: R \rightarrow R$, which is continuous only at one point. (c) At least one of (a) and (b) is true. (d) At least one of (a) and (b) is false. Ans © 22 3 is a removable discontinuity of 4 (a) (b) $1 / \sin(x - 3)$ (c) (x+3)/(x-3)(d) Ans (d) If f(x) = L then 23 1 (a) f(x) = |a|(b) f(x) = a(c) f(x) does not exist (d) f(x) may or may not exist Ans (d)

24 If $\lim x \to a f(x) = L$, which one of the following expressions is necessarily 1 true?

(a) f is continuous at x = a(b) f(a) does not exist. (c) f(a) = L(d) $\lim x \to a + f(x) = L$. Ans (d)

25	The function f: [a, b] → R is continuous on [a, b] then (a) F is not bounded (b) F is bounded but does not attain it bounds (c) F is bounded and attain its bounds (d) F is differentiable Ans (c)							
26	The function defined by $f(x) = \{x^2 \text{ if } x > 2\}$ = $\{x^3 \text{ if } x < 2\}$ is continuous	1						
	$- \{x \mid n x \leq 2 \}$ is continuous							
	a.)Everywhere(b) at 2(c) on $R \ 2$ (d) None of these							
	Answer3							
27	The function defined by $f(x) = e^{2x}$ is continuous	1						
	a.)Only when x is a rational number (b) only when x is an irrational number							
	(c) at every real number (d) nowhere							
	Answe3							
28.	The function defined by $f(x) = \{1, x \in Q\}$	1						
	$\{-1, x \in \mathbb{R} \setminus \mathbb{Q} \text{ is continuous}\}$							
	a) at every rational number only (c) at every real number(b) at every irrational number only (d) nowhere							
	Answer4							
29.	The function defined by $f(x) = \{x, x \in Q\}$							
	$\{-x, x \in \mathbb{R} \setminus O \}$ is							
	continuous							
	a) at every rational number only(b) at every irrational number only(c) only at 0(d) nowhere							
	Answer3							
30.	The function defined by $f(x) = \{x \sin(1/x) \text{ if } x \neq 0\}$							
	$\{a if x=0 is continuous at$							
	0,							
	a) If $a=1$ (b) if $a=-1$ (c) if $a=0$ (d) None of these							
31	Answer1 The function $f(x) = for x$ is	1						
51	a) continuous and bounded b) continuous and not bounded	1						
	c)discontinuous d) none of these							
22	Answer1	1						
32	Every bounded sequence in	1						

	a) has atleast one convergent subsequence b) has only one convergent						
	c) is always convergent d) is not convergent						
	Answer1						
33	The polynomial x^2+1 has	1					
	a) no zero in R b) one zero in R c) two zeros in R d) none of these						
31	Answer1	1					
54	a = (a + b) + (a + c) +	1					
	Answer1						
35	The value of	1					
	a) 1/3 b) 1 c) 5/7 d) 0						
	Answer3	_					
36	The value of	1					
	(a) 1						
	(b) 1/7						
	(c) 0 (d) 7						
	(0) / Answer3						
	AllSwellS						
37	The value of	1					
	a) 4 b) 0 c) 1 d) -1						
	Answer1						
•		1					
38	The function defined by $f(x) = \{x-2 \text{ if } x \neq 2 \}$						
	$\{a \mid x-z \mid s \text{ continuous at } z \mid s a=, a \}$						
	Answer1						
39	The value of	1					
	a) 4 b) 12 c) 1 d) -1						
	Answer2						
40	The function defined by $f(x) = \{x^2 \mid f(x) > 2\}$	1					
40	= $\{4 \text{ if } x < 2\}$ is continuous	1					
	a.)Everywhere(b) at 2(c) on $R \ (d)$ None of these						
	Answer2						
41	The function defined by $f(x) = \{\sin x \text{if } x \ge x \}$	2					
	$\{\cos x \text{if } x < s \text{ continuous } _$	·					
	a.) Everywhere (b) only at (c) on $\mathbb{R} \setminus (d)$ nowhere						

42 The function defined by $f(x) = \{x^2+1 \text{ if } x \neq 5\}$ 2 a if x=5 is continuous at 5. a) For any $a \in \mathbb{R}$ (b) if a = 6(c) if a=26 (d) None of these Answer3 The function defined by $f(x) = \{\cos x+1 \text{ if } x \neq \pi \}$ 43 2 {a if $x=\pi$ is continuous at π (b) if a=1 (c) if a=0 a)For any a∈R (d) None of these Answer3 The function defined by $f(x) = \{x^2$ 44 2 if x > 0 $\begin{cases} 1 & \text{if } x=0 \\ \{x^3 & \text{if } x<0 \end{cases}$ is continuous (b) $\forall x \in \mathbb{R}$ (c) $\forall x \in \mathbb{R} \setminus 0$ (d) nowhere is continuous a)Only at x=0 45 Amongst the following, the false statement is . 3 There exists a function $f: R \rightarrow R$, which is discontinuous only at one a. point. There exists a function $f: R \rightarrow R$, which is continuous only at one b. point. At least one of (a) and (b) is true. c. At least one of (a) and (b) is false d. Answer4 The function defined by $f(x) = \{\sin x + 1 \text{ if } x \neq \pi\}$ 2 46 {a if $x=\pi$ is continuous at π a)For any a∈R (d) None of (b) if a=1 (c) if a=0these Answer2 47 The function defined by $f(x) = \{x^3+1 \text{ if } x \neq 5\}$ if x=5 is continuous at 5. {a a) For any $a \in \mathbb{R}$ (b) if a=6 (c) if a=126(d) 26

18	Answer3 The function defined by $f(x) = \{ sec \ x+1 \ if \ x \neq \pi \}$	2
40	$\begin{cases} a & \text{if } x=\pi \text{ is continuous at} \end{cases}$	2
	π a)For any a∈R (b) if a=1 (c) if a=0 (d) Not these	one of
49	Answer3 The function defined by $f(x) = \{x^3+1 \text{ if } x \neq 4 \}$ $\{a \text{ if } x=4 \text{ is continuous}\}$	2 s at 4.
	a) For any $a \in \mathbb{R}$ (b) if $a=65$ (c) if $a=126$ (d) 25	
50	The function defined by $f(x)=\{x^4+1 \text{ if } x\neq 5 \\ \{a \text{ if } x=5 \text{ is continuous} \\ a \}$ For any $a \in \mathbb{R}$ (b) if $a=26$ (c) if $a=126$ (d) 626	2 5 at 5.
51	Answer4 Unit 2 Suppose (where satisfies the following two conditions and Ther value of is a) 55 b) 88 c) 66 d) 7	n the 3
52.	Answer3 Which of the following function is continuous at x=0 but not different at x=0? a) $f(x)=x^{-5/3}$ b) $f(x)=x^{-1/3}$ c) $f(x)=x^{1/3}$ d) $f(x)=x^{5/3}$	entiable 1
53.	Answer4 Let then	1
	a) b) c) d) not defined	
	Answer4	
54	Let, at the function is	1
	 a) Continuous but not differentiable b) Differentiable but not continuous not differentiable c) Differentiable d) Not continuous 	e us and

55. Let be a differentiable function where the line tangent to the graph of at is 1

, then

	a) , b)	b) d)						
	Answer2							
56.	Let then the	ne number o	of points w	here is not d	ifferentiable are			
	a)		b)	c)	d)			
	Answer1							
57.	 7. Consider the following statements i) If is continuous at then is differentiable at ii) If exists then is differentiable at iii) If exists then is differentiable at iv) If is differentiable at then 							
	a) b) Only (ii)) (i) and (i true	is true ii) are not	true	c) (ii) and (iii) a d) (i), (ii) and (i	re true v) are		
	Answer4							
58	Let be diff ii). If and	ferentiable f	functions w then	vith the follow	ving properties			
	a) b)	C	:)	d)			
57.	Answer1 Let be differentiable functions. If where then is							
	a)	b)	c)	d)			
58	Answer2 If and the	n	b)		đ			
	aj		0)	0)	u)			

Answer1

59	If then is							1	
	a)	b)	c)		d)				
	Answer1								
60	If then	is						1	
	a)	b)		c)		d)			
<i>с</i> 1	Answer3	5	C		•				
61	If then is (assu	uming is	a func	ction of	t)			I	
	a)		b)		c)	d)			
	Answer2								
62	If then is (assu	uming is	a func	ction of	f)is			1	
	a)	b)	c)	d)	,				
	Answer3								
63	If is the inverse function of and if then								
	a) Answer4		b)		c)		d)		
64	Suppose and h	is the in	verse f	functio	n of t	hen		1	
	a)		b)		c)		d)		
	Answer2								
65	Let be differentis	ntiable fu	nction	s. If ar	nd are	e invers	ses of each other and then	1	
	a)				c)				
	b)				d) c	annot c	compute as data is		
	insufi	ficient							
	Answer3								

66 If then third order derivative

a) cos x c) c) d) Answer3

67 Let, the function is

a) Continuous but not differentiable at x=0
b) Differentiable but not continuous at x=0
c) Differentiable at x=0
d) Differentiable everywhere except x=0

Answer1

68

Then

a) Discontinuous at x=0 and not differentiable at x=0
b) Differentiable but not continuous at x=0
c) c)
d) continuous and not Differentiable at x=0

Answer1

69

a) Continuous but not differentiable at x=0
b) Differentiable but not continuous at x=0
d) Differentiable everywhere
Answer3

- 70 If $f(x) = \sin x$, $f^{h}(x) =$ a) $\sin(n\pi/2+x)$ b) $\sin(n\pi/2-x)$ c) $\cos(n\pi/2+x)$ d) $\cos(n\pi/2-x)$ Answer1
- 71 If $f(x) = \cos x$, $f^{h}(x) =$ a)sin(n $\pi/2+x$) b) sin(n $\pi/2-x$) c) cos(n $\pi/2+x$) d) cos(n $\pi/2-x$) Answer3

2

2

72 Let, at the function is

a) Continuous but not differentiable at x=2
b) Differentiable but not continuous at x=2
d) Not continuous and not differentiable at x=2

73 If $y=a^x$ $y_2=a^x$ b) $a^x \log a c$) $a^x (\log a)^2 d$) 0 Answer3

- 74 If y= then
 - a) b)m c) d)m!

Answer3

- 75 If then third order derivative
 - a) cosx c) c) d)

Answer3

The given function is differentiable at c if the graph of the function has 76 1 (a) a unique non vertical tangent at c (b) has many tangent nonvertical tangent at c (c) a unique vertical tangent at c (d) has more than vertical tangent at c Ans: (a) Which of the following functions is continuous at x = 0 but not 77 2 differentiable at x = 0? (a) $x^{-4/3}$. (b) $x^{-1/3}$. (c) $x^{1/3}$. (d) $x^{4/3}$. Ans : (d)

78

Let
$$f(x) = \begin{cases} x^2 & \text{if } x \le 2, \\ 8 - 2x & \text{if } x > 2. \end{cases}$$

Then f is

3

2

2

(a) continuous but not differentiable at x = 2. (b) Not continuous at x = 2 but differentiable at x = 2. (c) Differentiable at x = 2. (d) Neither continuous nor differentiable at x = 2. Ans: (a)79 1 Let f(x) = |x - 2| + |x - 3|, for all $x \in R$ then f'(2) = ?(a) - 2(b)0(c) 3(d) not defined. (d)80 F is differential at x = a there for f is 1 (a) continuous at x = a(b) not continuous at x=a(c) 1/f is differential at x= a (d) 1/f is never differential at x =a Ans: (a) 81 F: RR is differentiable at x = a, if f is even, then 1 (a) F' is odd (b) F' is even (c) F' is constant (d)F'0Ans (a) 82 F² is differentiable in on R therefor 1 (a) F is differentiable (b) F is differentiable at some point of R (c) F is continuous at least some point of F (d) May or may not continuous and differentiable Ans (d) F(x) = |x-7|, x in R is83 1 (a) Differentiable at x=7(b) Differentiable in R (c) Not differentiable on x = 7(d) Not differentiable on R- $\{0\}$ Ans: (c)84 The function tan x is 2 (a) Well- defined on R (b) Differentiable on R (c) Not differentiable anywhere on R (d) Differentiable on $n\pi$ Ans : (d)The function $e^{2\cos x}$ is 85 3 (a) Differentiable on R

(b) Not differentiable anywhere on R (c) Not differentiable at x = 0(d) Not differentiable at x =Ans (a) The derivative of the inverse function of $f(x) = 8x + x^2$, x in R at x=20 is 86 2 (a) 1/12(b)12 (c) 1/48 (d)48 Ans: (d)The derivative of the inverse function of $f(x) = x^3 - 4x + 1$ in R at x = 22 87 (a) 4 $(b)\frac{1}{4}$ (c) 1/8(d)8Ans: © 88 If y = sin (ax+b), where a, b in R, then $y_n =$ 1 (a) $a^n sin(ax+b+)$ $(b)a^{n}\cos(ax+b+)$ (c) $a^n sin(ax+b+)$ $(d)a^{n}\cos(ax+b+)$ Ans: (a) 89 y = sin (a+b), where a,b in R, then $y_n =$ 1 (a) $a^n sin(ax+b+)$ $(b)a^{n}\cos(ax+b+)$ (c) $a^n sin(ax+b+)$ (d)0Ans (d) 90 The nth derivative of xe^x is 4 (a) e^x (b) $x^n e^x$ (c) $x e^{nx}$ (d) $x e^{x} + n e^{x}$ Ans: (d)Y = cos(2x+5) then $y_{10} =$ 2 91 (a) sin(2x+5)(b) $2^{10} \cos(2x+5)$ (c) $2^{10} \cos(2x+5+)$ $(d) 2^{10} \cos(2x+5)$ Ans: (c) answer3 If $x = \cos \theta$, $y = \sin \theta$ then dy /dx = 92 3 (a) $\tan^3 \theta$ (b) $\tan \theta$

(c) – tan θ (d) $\cot \theta$ Ans: (c)If $x^2 + 2xy = y^2$ then dy /dx is (assuming y is a function of x) 93 2 (a). (b). (c) 2x + 2y. (d)(x+1)/y. Ans : (b)If h is the inverse function of f and if f(x) = 1 / x then h'(3) =94 2 (a) 9 (b) 1/9(c) -9 (d) - 1/9Ans : (c) Let f, g : $R \rightarrow R$ be differentiable functions. If f and g are inverses of each 95 1 other and f' (2) = 5 and g (2) = ?(a) - 5.(b) 1/5. (c) - 1/5. (d) Cannot calculate as data is insufficient. Ans (b) $f: R \rightarrow R$ is a differentiable function where the tangent to the graph of 96 f(x) at x = 2 is y = x + 1, then (a) f(2) = 1, f'(2) = 1. (b) f(2) = 1, f'(2) = 0. (c) f(2) = 3, f'(2) = 1. (d) f(2) = 3, f'(2) = 0. Ans (c) If y = then $y_5 =$ 97 1 (a) (b) (c) (d) Ans (a) Unit 3 Point of inflection of $f(x) = x^3 + 2x^2 - 4$ 98 2 (a) -2/3(b) 2/3(c) 3/2(d) - 3/2Ans (a) 99 $F(x) = e^x$ is always 1

	(a) Concave upward everywhere	
	(b) Concave downward everywhere	
	(c) Concave upward only $x > 0$	
	(d) Concave downward for $x > 0$	
	Ans (a)	
100	Which of the following functions is increasing on the interval $(-\pi/2, \pi/2)$	1
)?	
	(a) X^2	
	(b) Cos x	
	(c) Sin x	
	$(\mathbf{d}) \mathbf{x} $	
	Ans: (c)	
101	The function $y = x^2$ is increasing on	1
	(a) R	
	(b)(-, 0)	
	(c)(0,	
	(d) Its decreasing function every where	
	Ans (b)	
102	The function $y = x^{3} - 6x^{2} + 9x - 3$ is increasing on	2
	(a)(1,3)	
	(b)R	
	(c)(0,	
	(d)(-0)	
	Ans : (a)	
103	$F(x) = x^3 - 3x^2 + 3x + 2$ is	1
	(a) Monotonically decreasing	
	(b) Monotonically increasing	
	(c) Monotonically non decreasing	
	(d) Monotonically non increasing	
	Ans: (b)	
104	Let $f: [a, b] \rightarrow R$ be a function such that f is continuous on [a, b],	1
	differentiable on (a, b) and	
	f(a) = f(b). Then	
	(a) there exists a unique $c \in (a, b)$ such that $f'(c) = 0$.	
	(b) there exists $c \in (a, b)$ such that $f(c) = 0$.	
	(c) there exists $c \in (a, b)$ such that $f'(c) = 0$.	
	(d) there exists $c \in (a, b)$ such that $f''(c) = 0$.	
	Ans : ©	
105	Let f: [a, b] \rightarrow R be a function such that f is continuous on [a, b] and	1
	differentiable on (a, b). Then	-
	(a) there exists a unique $c \in (a, b)$ such that $f'(c) =$	
	(a) there exists $a \in (a, b)$ such that $f'(a) =$	
	(0) under exists $c \in (a, b)$ such that $\Gamma(c) = c$.	

	 (c) there exists c ∈ (a, b) such that f(c) = . (d) there exists c ∈ (a, b) such that f''(c) = . Ans : 	
106	 For a given function, y = f(x), it is found that f' (c) = 0. Therefore, (a) c must be a point of local maximum of f (b) c must be a point of either local maximum or local minimum of f (c) c must be a point of local minimum of f. (d) nothing can be said about c. 	1
10-	Ans: (b)	
107	 The function y = e^x is concave upwards (a) only at the origin (b) over negative real numbers only. (c) over positive real numbers only (d) Everywhere 	1
100	Ans (u) The function $u = \ln u$ is concerned downwords	1
108	The function $y = \ln x$ is concave downwards	1
	 (a) only at 1 (b) over positive rational numbers only. (c) over positive irrational numbers only. (d) subcasses it is defined. 	
	(d) wherever it is defined.	
109	The n th Taylor polynomial of sin x around 0 is given by (a) $x - + - \cdots +$ where $n = 2k$ or $n = 2k - 1$.	1
	(b) $1+x - + - \cdots + \text{ where } n = 2k \text{ or } n = 2k - 1$	
	(c) $x + - \cdots + where n = 2k \text{ or } n = 2k - 1$	
	$(d)x - + - \cdots + \text{ where } n = 2k \text{ or } n = 2k - 1$	
	Ans : (a)	
110	The n th Taylor polynomial of e^x around 0 is given by (a) $x - + - \cdots + w$ here $n = 2k$ or $n = 2k - 1$. (b) $1+x - + - \cdots + w$ here $n = 2k$ or $n = 2k - 1$	1
	(c) $x + + - \cdots + where n = 2k \text{ or } n = 2k - 1$	
	(d) $1+x + + - \cdots +$	
	Ans: (d)	
111	$F(x) = xe^{x}$, x in R is	1
	(a) Increasing if $x > -1$ (b) Decreasing if $x > 0$	
	(b) Decreasing II $X > 0$ (c) Neither increasing nor decreasing	
	(d) Increasing everywhere	
	Ans · (a)	
112	$F(x) = x - x^2$ in x in R is	2
_	(a) F is concave upward everywhere	_
	(b) F is concave downward everywhere	
	(c) Concave upward only if x>0	

	(d) Concave downward if $x>0$	
	Ans: (b)	
113	$F(x) = x^{6} + x^{2}$, x in R is	2
	(a) F is concave upward everywhere	
	(b) F is concave downward everywhere	
	(c) F Concave upward only if x 0	
	(d) F Concave downward if x 0	
	Ans : (a)	
114	The value of	1
	(a) 1	
	(b)-1	
	(c) 9/2	
	$(\mathbf{d})0$	
	Ans; (c)	
115	The value of is	1
	(a) 1	
	$(b) Log_e 10$	
	(c) Log_{10} 10	
	$(\mathbf{d})0$	
	Ans: (b)	
116	$F(x) = x^3 - 12x + 1$ has local minima at	2
	(a) $X = 2$	
	(b) X=-2	
	(c) X=0	
	(d) X = -1	
	Ans (b)	
117	The value of $c \in (0, 2)$ for $f(x) = \cos x$ by Rolle's theorem	2
	(a) 1	
	(b)-1	
	(c)	
	(\mathbf{d})	
	Ans : ©	
118	$f(x) = 10 - 12x - 3x^2 - x^3$ in x in R is	3
	(a) Increasing everywhere	
	(b) Decreasing everywhere	
	(c) Decreasing at $x = -2$	
	(d) Increasing at $x = 2$	
	Ans : (b)	
119	$f(x) = x - 2 \sin x$, $0 < x < 3\pi$, has minimum value at	2
	(a) $\pi/3$	
	(b) $2 \pi/6$	
	(c) $\pi/6$	
	(d)0	

	Ans : (c)	
120	$f(x) = x^2 - 5x + 9$, $x \in [1, 4]$ what is value of c, by Rolle s theorem (a) $2/5$	1
	(b) 5/2	
	(c) - 2/5	
	(d) - 5/2	
121	Alls. (0) If f is continuous at the point and curve changes from concave unward to	1
121	concave downward or vice versa is called	1
	(a) Point of inflection	
	(b) Maximum at a point	
	(c) Minimum at a point	
	(d) increasing	
100	Ans : (a)	1
122	F (x) = $5x^2 - 2x$ has critical point at	1
	(a) 5 (b) $1/5$	
	(0) -5	
	(d) - 1/5	
	Ans: (d)	
173	$F(x) = x^2$ $8x \pm 5$ has critical point at	2
123	$\Gamma(x) = x - \delta x + 5$ has entreal point at (e) 4	2
	(f) -4	
	(g)2	
	(h) 8	
	Ans 1	
124	The function $y = f(x)$ is decreasing at c , if	2
	(a) , whenever and , whenever .	
	(b), whenever and , whenever.	
	(c), whenever and, whenever.	
	(d) all of these	
	Answer1	
125	Tangent of the curve of $F(x) = x^2 + 2x + 1$ is parallel to line $y = 4x + 3$	2
	(a) 2	
	$\begin{pmatrix} 0 \\ 1 \\ (2) \\ 4 \end{pmatrix}$	
	(d)	
	Answer2	
126	The function is increasing at c , if	1
	(a), whenever and, whenever.	

(b), whenever and, whenever.

(c) , whenever and , whenever .

(d) none of these

Answer2

127 Let a and b be such that . Then, there exists c between a and b such that
(a) (b)
(c) (d) none of these

Answer1

128 Let a function f be continuous on [a, b] and differentiable on (a, b). Then 1

- (a) there exists a unique such that
- (b) there exists such that
- (c) there exists such that

(b) 1

(d) none of these

Answer3

129 =

(a) 0

(c)

1

1

(d) None of these

Answer1

- 130 Let a function f be continuous on [a, b], differentiable on (a, b) and let f(a) = f(b). Then
 - (a) there exists a unique such that .
 - (b) there exists such that .
 - (c) there exists such that .
 - (d) none of these

Answer3
131 =
(a) 1 (b) 0 (c)
$$a$$
 (d) None of these
Answer1

100	TT1 C /	• 1 •	
147	The tunetion	10 doorooging	of 0 1t
1.)2			al C. II

(a), whenever and , whenever .

(b), whenever and , whenever .

 (\mathbf{c}) , whenever $% \mathbf{c}$ and \mathbf{c} , whenever \mathbf{c} .

(d) none of these

133	Answer3 Which of the following functions is increasing at the origin? 1							
	(a)	(b)	(c)	(d)				
134	Answer4 =							1
	(a) 2		(b) 1			(c) 0	(d) None of these	
135	=							1
	(a) 1		(b) 0			(c)	(d) None of these	
136	Answer1 =							1
	(a) 0		(b) 1			(c)	(d) None of these	
137	Answer2 The function	n is de	ecreasi	ng on				1
	(a)	(b)		(c)			(d) None of these	
138	The function	n is in	creasi	ng on				1
	(a)	(b)		(c)		(d) No	ne of these	
	A namon1							
139	The function	n is de	ecreasi	ng on				1
	(a) (1, 3)		(b)	C		(c)	(d) None of these	
140	Answer1 The function	n is in	creasi	ng on				1
	(a)		(b)	-	(c)		(d) None of these	

141	Which of the following functions is decreasing at the origin?								
	(a)	(b)	(c)	(d)					
142	Answer1 The functio	on atta	ins its	maximum	value at			1	
	(a) 1		(b) –	-1	(c) 0		(d) None of the	se	
142	The functio	on atta	ins its	minimum	value			1	
	(a) at exact	ly one	point		(b) a	t only finitely	y may points		
	(c) at infini	tely m	any po	oints		(d) nowher	e		
143	Answer3 For a given	funct	ion, , i	t is found t	hat . The	refore,		1	
	 (a) c must be a point of local maximum of f. (b) c must be a point of local minimum of f. (c) c must be a point of either local maximum or local minimum of f. (d) nothing can be said about c. 							f.	
144	Answer3 The functio	on is c	oncave	e downwar	ds			1	
	(a) only at only	: 1			(b)	over positiv	ve rational numb	ers	
	(c) over pos	sitive	irratior	nal number	s only	(d) wherev	er it is defined		
145	Answer2 The functio	on is c	oncavo	e upwards				1	
	(a) only at only	the ori	igin			(b) over ne	egative real numb	ers	
	(c) over pos	sitive	real nu	mbers only	y	(d) everyw	here		
	Answer4								

146 A triangle with the given perimeter has maximum area if and only if it is 2

	(a) obtuse angled	(b) isosceles	(c) right angled	(d) equilateral	
Answer4 147 A rectangle with the given perimeter has maximum a				area if and only if it is a	
	(a) rhombus	(b) parallelogram	(c) square	(d) kite	
148	Answer3 The function, has local maximum at				2
	(a)	(b)	(c) 0	(d) None of these	
	Answer1				

- 149 Amongst the following, the function, which has a local minimum at the 2 origin, is
 - (a) (b)
 - (c) (d)

- 150 Amongst the following, the function, which has a local maximum at the 2 origin, is
 - (a) (b)
 - (c) (d)

Answer1