QUESTION BANK

CLASS: FYBSC MATHS I TITLE :CALCULUS II

Q 1 The value of
(a) $1 / 3$
(b) 1
(c) $3 / 4$
(d) 0

Ans: $3 / 4$
2 The value of
(a) 6
(b) 3
(c) 4
(d) 0

Ans: 6
3 If $f(x)=(\tan x) / x$, for $x \neq 0$ then $\lim x \rightarrow 0 f(x)$
(a) 1
(b) 0
(c)
(d) -1

Ans (a)
4
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=\left\{\begin{array}{ll}x, & \text { if } x<0 \\ e^{x}, & \text { if } x \geq 0\end{array}\right.$ then $\lim _{x \rightarrow 0^{+}} f(x)$ is
(a) 0
(b) 1
(c) e
(d) Does not exist

Ans (b) -1
5 The value of $\lim x \rightarrow 0$
(a) -1
(b) 1
(c) 0
(d) Does not exist

Ans: (d)

6 If $f(x)=\left\{\begin{array}{ll}2 x+1 & \text { for } x<0 \\ x-1 & \text { for } x \geq 0\end{array}\right.$ then $x=0$ is a point at which the function f is
(a) Continuous
(b) Discontinuous
(c) Decreasing
(d) Does not exist
$7 \quad F(x)=x^{4}+x^{2}, x R$ is
(a) Continuous
(b) Continous only if $\mathrm{x}>0$
(c) Discontinous
(d) Always negative

Ans: (a)
8 The value of where $0<x<1 / 5$
(a) 1
(b) 0
(c) -1
(d) $1 / 5$

Ans (b)
9 The function $f(x)=|x-2|+3, x \in R$ is
(a) discontinuous at $\mathrm{x}=3$.
(b) discontinuous at $\mathrm{x}=2$.
(c) continuous everywhere in R.
(d) discontinous everywhere in R

Ans©
10 The function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-8$
(a) is continuous at x in R
(b) Discontinuous at $\mathrm{x}=2$
(c) Discontinuous at $\mathrm{x}=8$
(d) Discontinuous in R

Ans (a)
11 Let $f(x)=\left\{\begin{array}{ll}2 x+4 & \text { if } x<4 \\ 3 b & \text { if } x \geq 4 .\end{array}\right.$. . If f is continuous on \mathbb{R} then the value of Y is
(a) 2
(b) 4
(c) 3
(d) 6

Ans (b) 4
12 If f: RR, and $f(x)=9$ then $\lim x 4 f(x)=$
(a) 4
(b) 9
(c) 36
(d) 13
(b)

13 Consider $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{c} \in \mathrm{R}$. Under which of the following condition
does $\lim x \rightarrow c f(x) g(x)=0$ is true
(a) $\operatorname{Lim} x \rightarrow c f(x)=0$
(b) $\operatorname{Lim} x \rightarrow c f(x)=L$ and $L \neq 0$ and $g(x)$ is bounded
(c) $\operatorname{Lim} x \rightarrow c g(x)=L$ and $f(x)$ is bounded
(d) $\operatorname{Lim} x \rightarrow c f(x)=L$ and $\operatorname{Lim} x \rightarrow c g(x)=1 / L, L 0$

Ans: (a)
$14 \lim x \rightarrow \pi / 4 \tan x,=$
(a) 1
(b) $1 / 2$
(c) $1 /$
(d) 0

Ans (a)
$15 \quad \lim x \rightarrow 0 \quad x^{2} \sin ()=$
(a) 0
(b) 1
(c) $\pi / 2$
(d) does not exist

An (b)
S
$16 \quad \lim x \rightarrow \pi / 2 \quad e^{\cos x}=$
(a)e
(b) 0
(c) 1
(d) Not defined

Ans ©
$\cos \left(\log \left(\mathrm{x}^{2}-2 \mathrm{x}+2+\sin (2 \mathrm{x}-2)\right)=\right.$
(a) 0
(b) $\pi / 2$
(c) 1
(d) Does not exist

Ans: (c)
$\mathrm{e}^{(x+\sin x-\cos x)}=$
(a) 1
(b) e
(c) $1 / \mathrm{e}$
(d) Does not exist

Ans: (c)

If $f(x)=L$ and $M, \quad=$
(a) L / M
(b) M / L
(c) L
(d) M

Ans: (a)
The function defined by $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x>0, \\ 1 & \text { if } x=0 \\ x^{3} & \text { if } x<0\end{array}\right.$ then f is continuous at $5,-$
(a) Only at $x=0$
(b) at every $x \in R$
(c) on $\mathrm{R} \backslash\{0\}$
(d) no where

Ans: (d)
21 Amongst the following, the false statement is \qquad
(a) There exists a function $f: R \rightarrow R$, which is discontinuous only at one point.
(b) There exists a function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$, which is continuous only at one point.
(c) At least one of (a) and (b) is true.
(d) At least one of (a) and (b) is false.

Ans ©
223 is a removable discontinuity of
(a)
(b) $1 / \sin (x-3)$
(c) $(x+3) /(x-3)$
(d)

Ans (d)
23 If $\mathrm{f}(\mathrm{x}) \mid=\mathrm{L}$ then
(a) $f(x)=|a|$
(b) $f(x)=a$
(c) $f(x)$ does not exist
(d) $f(x)$ may or may not exist

Ans (d)

24 If $\lim x \rightarrow a f(x)=L$, which one of the following expressions is necessarily true?
(a) f is continuous at $x=a$
(b) $f(a)$ does not exist.
(c) $f(a)=L$
(d) $\lim x \rightarrow a+f(x)=L$.

Ans (d)
25 The function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is continuous on $[\mathrm{a}, \mathrm{b}]$ then 1
(a) F is not bounded(b) F is bounded but does not attain it bounds
(c) F is bounded and attain its bounds
(d) F is differentiable
Ans (c)
26 The function defined by $\mathrm{f}(\mathrm{x})=\left\{\mathrm{x}^{2}\right.$ if $\mathrm{x}>2$ 1

$$
=\left\{\mathrm{x}^{3} \text { if } \mathrm{x} \leq 2\right. \text { is continuous }
$$

\qquad .
a.)Everywhere
(b) at 2
(c) on $\mathrm{R} / 2$
(d) None of these
Answer3
27 The function defined by $\mathrm{f}(\mathrm{x})=\mathrm{e}^{2 \mathrm{x}}$ is continuous \qquad .
a.) Only when x is a rational number
(b) only when x is an irrational number
(c) at every real number
(d) nowhere
Answe3
28. The function defined by $f(x)=\{1, x \in Q$
\qquad .
a) at every rational number only
(b) at every irrational number only
(c) at every real number
(d) nowhere
Answer4
29. The function defined by $f(x)=\{x, x \in Q$ $\{-x, x \in R \backslash Q$ is continuous \qquad .
a) at every rational number only
(b) at every irrational number only
(c) only at 0
(d) nowhere
Answer3
30. The function defined by $f(x)=\{x \sin (1 / x)$ if $x \neq 0$ $\{$ a if $x=0 \quad$ is continuous at 0 , \qquad .
a) If $\mathrm{a}=1$
(b) if $a=-1$
(c) if $\mathrm{a}=0$
(d) None of these

Answer 1

31 The function $f(x)=$, for x is
a) continuous and bounded b) continuous and not bounded
c)discontinuous
d) none of these
Answer 1
32 Every bounded sequence in
a) has atleast one convergent subsequence b) has only one convergent subsequence
c) is always convergent
d) is not convergent

Answer 1
33 The polynomial $\mathrm{x}^{2}+1$ has
a) no zero in R b) one zero in R c) two zeros in R d) none of these

Answer 1
$34=$
a) 0
b) 1 c) -
d) does not exists

Answer 1
35 The value of
a) $1 / 3$
b) 1
c) $5 / 7$
d) 0

Answer3
36 The value of
(a) 1
(b) $1 / 7$
(c) 0
(d) 7

Answer3
37 The value of
a) 4
b) 0
c) 1
d) -1

Answer 1
38 The function defined by $\mathrm{f}(\mathrm{x})=\{\mathrm{x}-2$ if $\mathrm{x} \neq 2$
$\{\mathrm{a}$ if $\mathrm{x}=2$ is continuous at 2 if $\mathrm{a}=$,
a) 0
b) 1
c) 2
d) -2

Answer 1
39 The value of
a) 4
b) 12
c) 1
d) -1

Answer2
40 The function defined by $f(x)=\left\{x^{2}\right.$ if $x>2$

$$
=\{4 \text { if } x \leq 2 \text { is continuous }
$$

\qquad
a.)Everywhere
(b) at 2
(c) on $\mathrm{R} \backslash 2$
(d) None of these

Answer2
41 The function defined by $f(x)= \begin{cases}\sin x & \text { if } x \geq\end{cases}$
\qquad .
a.)Everywhere
(b) only at
(c) on R \}
(d) nowhere

Answer 1
42 The function defined by $f(x)= \begin{cases} & x^{2}+1 \\ & \text { if } x \neq 5 \\ \{a & \text { if } x=5 \text { is continuous at } 5 .\end{cases}$
a) For any $a \in R$
(b) if $a=6$
(c) if $\mathrm{a}=26$
(d) None of these

Answer3
43 The function defined by $f(x)=\{\cos x+1$ if $x \neq \pi$
$\{$ a if $x=\pi$ is continuous at π \qquad .
a)For any $a \in R$
(b) if $\mathrm{a}=1$
(c) if $\mathrm{a}=0$
(d) None of these

Answer3
44 The function defined by $f(x)=\left\{x^{2} \quad\right.$ if $x>0$
$\{1 \quad$ if $x=0$
$\left\{x^{3} \quad\right.$ if $x<0 \quad$ is continuous
\qquad .
a)Only at $x=0$
(b) $\forall x \in R$
(c) $\forall \mathrm{x} \in \mathrm{R} \backslash 0$
(d) nowhere is continuous

45 Amongst the following, the false statement is \qquad .
a. There exists a function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$, which is discontinuous only at one point.
b. There exists a function $f: R \rightarrow R$, which is continuous only at one point.
c. At least one of (a) and (b) is true.
d. At least one of (a) and (b) is false

Answer4
46 The function defined by $f(x)=\{\sin x+1$ if $x \neq \pi$
\{ a if $x=\pi$ is continuous at π \qquad .
a)For any $a \in R$
(b) if $a=1$
(c) if $\mathrm{a}=0$
(d) None of these

Answer2
47 The function defined by $f(x)=\left\{x^{3}+1\right.$ if $x \neq 5$ \{a if $x=5$ is continuous at 5 .
a) For any $a \in R$
(b) if $a=6$
(c) if $\mathrm{a}=126$
(d) 26

Answer3
48 The function defined by $f(x)=\{\sec x+1$ if $x \neq \pi$
π \qquad .
a)For any $a \in R$
(b) if $\mathrm{a}=1$
(c) if $\mathrm{a}=0$
(d) None of these

Answer3
49 The function defined by $f(x)=\left\{x^{3}+1\right.$ if $x \neq 4$
\{a if $x=4$ is continuous at 4 .
a) For any $a \in R$
(b) if $a=65$
(c) if $\mathrm{a}=126$
(d) 25

50 The function defined by $f(x)=\left\{x^{4}+1\right.$ if $x \neq 5$
\{a if $x=5$ is continuous at 5 .
a) For any $a \in R$
(b) if $a=26$
(c) if $\mathrm{a}=126$
(d) 626

Answer4
Unit 2
51 Suppose (where satisfies the following two conditions and Then the value of is
a) 55
b) 88
c) 66
d) 77

Answer3
52. Which of the following function is continuous at $x=0$ but not differentiable at $x=0$?
a) $f(x)=x^{-5 / 3}$
b) $f(x)=x^{-1 / 3}$
c) $f(x)=x^{1 / 3}$
d) $f(x)=x^{5 / 3}$

Answer4
53. Let then
a)
b)
c) d) not defined

Answer4
54 Let, at the function is
a) Continuous but not differentiable
c) Differentiable
b) Differentiable but not continuous
d) Not continuous and not differentiable

Answer4
55. Let be a differentiable function where the line tangent to the graph of at is
, then
a) , b)
b) d)

Answer2
56. Let then the number of points where is not differentiable are
a)
b)
c)
d)

Answer 1
57. Consider the following statements
i) If is continuous at then is differentiable at
ii) If exists then is differentiable at
iii) If exists then is differentiable at
iv) If is differentiable at then
a) Only (ii) is true
c) (ii) and (iii) are true
b) (i) and (iii) are not true
d) (i), (ii) and (iv) are true

Answer4

58 Let be differentiable functions with the following properties
ii). If and
then
a)
b)
c)
d)

Answer1
57. Let be differentiable functions. If where
then is
a)
b)
c)
d)

Answer2
58 If and then
a)
b)
c)
d)

Answer 1

59 If then is
a)
b) c$)$
d)

Answer 1
60 If then is
a)
b)
c)
d)

Answer3
61 If then is (assuming is a function of)
a)
b)
c)
d)

Answer2

62 If then is (assuming is a function of) is
a)
b)
c)
d)

Answer3
63 If is the inverse function of and if then
a)
b)
c)
d)

Answer4
64 Suppose and h is the inverse function of then
a)
b)
c)
d)

Answer2
65 Let be differentiable functions. If and are inverses of each other and then is
a)
c)
b)
d) cannot compute as data is insufficient

Answer3

66 If then third order derivative

a) $\cos x$
c)
c)
d)

Answer3
67 Let, the function is
a) Continuous but not differentiable at $x=0$
c) Differentiable at $x=0$
b) Differentiable but not continuous at $x=0$
d) Differentiable everywhere except $x=0$

Answer 1
68
Then
a) Discontinuous at $x=0$ and not differentiable at $x=0$
c)

Differentiable at $x=0$
b) Differentiable but not continuous at $x=0 \quad$ d) continuous and not Differentiable at $\mathrm{x}=0$

Answer1
69
a) Continuous but not differentiable at $x=0$
c) Differentiable at $x=0$
b) Differentiable but not continuous at $x=0$
d) Differentiable everywhere

Answer3
$70 \quad$ If $f(x)=\sin x, f^{\mathrm{h}}(x)=$
a) $\sin (n \pi / 2+x)$ b) $\sin (n \pi / 2-x)$ c) $\cos (n \pi / 2+x) d) \cos (n \pi / 2-x)$

Answer 1
71 If $f(x)=\cos x, f^{n}(x)=$
a) $\sin (n \pi / 2+x)$ b) $\sin (n \pi / 2-x)$ c) $\cos (n \pi / 2+x) d) \cos (n \pi / 2-x)$

Answer3

72 Let, at the function is
a) Continuous but not differentiable at $\mathrm{x}=2$
c) Differentiable at $x=2$
b) Differentiable but not continuous at $\mathrm{x}=2$
d) Not continuous and not differentiable at $x=2$

Answer3
73 If $\mathrm{y}=\mathrm{a}^{\mathrm{x}} \quad \mathrm{y}_{2}=$
a) a^{x}
b) $a^{x} \log a$
c) $a^{x}(\log a)^{2}$
d) 0

Answer3

74 If $\mathrm{y}=$ then
a) b) m c) d)m!

Answer3
75 If then third order derivative
a) $\cos x$
c)
c)
d)

Answer3

76 The given function is differentiable at c if the graph of the function has
(a) a unique non vertical tangent at c
(b) has many tangent nonvertical tangent at c
(c) a unique vertical tangent at c
(d) has more than vertical tangent at c

Ans: (a)
77 Which of the following functions is continuous at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=0$?
(a) $\mathrm{x}^{-4 / 3}$.
(b) $\mathrm{x}^{-1 / 3}$.
(c) $x^{1 / 3}$.
(d) x^{43}.

Ans: (d)
Let $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 2, \\ 8-2 x & \text { if } x>2 .\end{array}\right.$.

[^0](a) continuous but not differentiable at $x=2$.
(b) Not continuous at $x=2$ but differentiable at $x=2$.
(c) Differentiable at $x=2$.
(d) Neither continuous nor differentiable at $\mathrm{x}=2$.

Ans: (a)
79 Let $\mathrm{f}(\mathrm{x})=|\mathrm{x}-2|+|\mathrm{x}-3|$, for all $\mathrm{x} \in \mathrm{R}$ then $\mathrm{f}^{\prime}(2)=$?
(a) -2
(b) 0
(c) 3
(d) not defined.
(d)
$80 \quad \mathrm{~F}$ is differential at $\mathrm{x}=\mathrm{a}$ there for f is
(a) continuous at $x=a$
(b) not continuous at $x=a$
(c) $1 / \mathrm{f}$ is differential at $\mathrm{x}=\mathrm{a}$
(d) $1 / \mathrm{f}$ is never differential at $\mathrm{x}=\mathrm{a}$

Ans: (a)
$81 \mathrm{~F}: \mathrm{RR}$ is differentiable at $\mathrm{x}=\mathrm{a}$, if f is even, then
(a) F^{\prime} is odd
(b) F^{\prime} is even
(c) F^{\prime} is constant
(d) $\mathrm{F}^{\prime} 0$

Ans (a)
$82 \quad \mathrm{~F}^{2}$ is differentiable in on R therefor
(a) F is differentiable
(b) F is differentiable at some point of R
(c) F is continuous at least some point of F
(d) May or may not continuous and differentiable

Ans (d)
$83 \quad \mathrm{~F}(\mathrm{x})=|\mathrm{x}-7|$, x in R is
(a) Differentiable at $x=7$
(b) Differentiable in R
(c) Not differentiable on $x=7$
(d) Not differentiable on R- $\{0\}$

Ans: (c)
84 The function $\tan x$ is
(a) Well- defined on R
(b) Differentiable on R
(c) Not differentiable anywhere on R
(d) Differentiable on $n \pi$

Ans: (d)
85 The function $\mathrm{e}^{2 \cos \mathrm{x}}$ is
(a) Differentiable on R
(b) Not differentiable anywhere on R
(c) Not differentiable at $\mathrm{x}=0$
(d) Not differentiable at $\mathrm{x}=$

Ans (a)
86 The derivative of the inverse function of $f(x)=8 x+x^{2}, x$ in R at $x=20$ is
(a) $1 / 12$
(b) 12
(c) $1 / 48$
(d) 48

Ans: (d)
87 The derivative of the inverse function of $f(x)=x^{3}-4 x+1$ in R at $x=2$
(a) 4
(b) $1 / 4$
(c) $1 / 8$
(d) 8

Ans: ©
88 If $\mathrm{y}=\sin (\mathrm{ax}+\mathrm{b})$, where a, b in R, then $\mathrm{y}_{\mathrm{n}}=$
(a) $a^{n} \sin (a x+b+)$
(b) $a^{n} \cos (a x+b+)$
(c) $a^{n} \sin (a x+b+)$
(d) $a^{n} \cos (a x+b+)$

Ans: (a)
$89 \mathrm{y}=\sin (\mathrm{a}+\mathrm{b})$, where a, b in R, then $\mathrm{y}_{\mathrm{n}}=$
(a) $a^{n} \sin (a x+b+)$
(b) $a^{n} \cos (a x+b+)$
(c) $a^{n} \sin (a x+b+)$
(d) 0

Ans (d)
90 The nth derivative of xe^{x} is
(a) e^{x}
(b) $\mathrm{x}^{\mathrm{n}} \mathrm{e}^{\mathrm{x}}$
(c) $\mathrm{Xe}^{\mathrm{nx}}$
(d) $x e^{x}+n e^{x}$

Ans: (d)
$91 \quad Y=\cos (2 x+5)$ then $y_{10}=$
(a) $\sin (2 x+5)$
(b) $2^{10} \cos (2 x+5)$
(c) $2^{10} \cos (2 x+5+)$
(d) $2^{10} \cos (2 x+5)$

Ans: (c) answer3
92 If $x=\cos \theta, y=\sin \theta$ then $d y / d x=$
(a) $\tan ^{3} \theta$
(b) $\tan \theta$
(c) $-\tan \theta$
(d) $\cot \theta$

Ans: (c)
93 If $x^{2}+2 x y=y^{2}$ then dy/dx is (assuming y is a function of x)
(a).
(b).
(c) $2 x+2 y$.
(d) $(x+1) / y$.

Ans: (b)
94 If h is the inverse function of f and if $f(x)=1 / x$ then $h^{\prime}(3)=$
(a) 9
(b) $1 / 9$
(c) -9
(d) $-1 / 9$

Ans: (c)
95 Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be differentiable functions. If f and g are inverses of each other and $f^{\prime}(2)=5$ and $g{ }^{\prime}(2)=$?
(a) -5 .
(b) $1 / 5$.
(c) $-1 / 5$.
(d) Cannot calculate as data is insufficient.

Ans (b)
$96 \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a differentiable function where the tangent to the graph of $f(x)$ at $x=2$ is $y=x+1$, then
(a) $f(2)=1, f^{\prime}(2)=1$.
(b) $f(2)=1, f^{\prime}(2)=0$.
(c) $f(2)=3, f^{\prime}(2)=1$.
(d) $f(2)=3, f^{\prime}(2)=0$.

Ans (c)
97 If $y=$ then $y_{5}=$
(a)
(b)
(c)
(d)

Ans (a)
Unit 3
98 Point of inflection of $f(x)=x^{3}+2 x^{2}-4$
(a) $-2 / 3$
(b) $2 / 3$
(c) $3 / 2$
(d) $-3 / 2$

Ans (a)
$99 \quad \mathrm{~F}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is always
(a) Concave upward everywhere
(b) Concave downward everywhere
(c) Concave upward only $x>0$
(d) Concave downward for $\mathrm{x}>0$

Ans (a)
100 Which of the following functions is increasing on the interval $(-\pi / 2, \pi / 2$)?
(a) X^{2}
(b) $\operatorname{Cos} x$
(c) $\operatorname{Sin} \mathrm{x}$
(d) $|x|$

Ans: (c)
101 The function $\mathrm{y}=\mathrm{x}^{2}$ is increasing on
(a) R
(b) $(-, 0)$
(c) $(0$,
(d) Its decreasing function every where

Ans (b)
102 The function $y=x^{3}-6 x^{2}+9 x-3$ is increasing on
(a) $(1,3)$
(b) R
(c) $(0$,
(d) (-0)

Ans: (a)
$103 \mathrm{~F}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}+2$ is
(a) Monotonically decreasing
(b) Monotonically increasing
(c) Monotonically non decreasing
(d) Monotonically non increasing

Ans: (b)
104 Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ be a function such that f is continuous on $[\mathrm{a}, \mathrm{b}]$, differentiable on (a, b) and $f(a)=f(b)$. Then
(a) there exists a unique $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
(b) there exists $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}(\mathrm{c})=0$.
(c) there exists $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
(d) there exists $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.

Ans: ©
105 Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ be a function such that f is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b). Then
(a) there exists a unique $c \in(a, b)$ such that $f^{\prime}(c)=$.
(b) there exists $c \in(a, b)$ such that $f^{\prime}(c)=$.
(c) there exists $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}(\mathrm{c})=$.
(d) there exists $c \in(a, b)$ such that $f^{\prime}(c)=$.

Ans:
106 For a given function, $y=f(x)$, it is found that $f^{\prime}(c)=0$. Therefore,
(a) c must be a point of local maximum of f
(b) c must be a point of either local maximum or local minimum of f
(c) c must be a point of local minimum of f.
(d) nothing can be said about c.

Ans: (b)
107 The function $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ is concave upwards
(a) only at the origin
(b) over negative real numbers only.
(c) over positive real numbers only
(d) Everywhere

Ans (d)
108 The function $y=\ln x$ is concave downwards
(a) only at 1
(b) over positive rational numbers only.
(c) over positive irrational numbers only.
(d) wherever it is defined.

Ans (d)
109 The $n^{\text {th }}$ Taylor polynomial of $\sin x$ around 0 is given by
(a) $\mathrm{x}-+-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$.
(b) $1+\mathrm{x}-+-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$.
(c) $\mathrm{x}+-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$.
(d) $\mathrm{x}-+-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$.

Ans: (a)
110 The n th Taylor polynomial of e^{x} around 0 is given by
(a) $\mathrm{x}-+-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$.
(b) $1+\mathrm{x}-+-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$
(c) $\mathrm{x}++-\cdots+$ where $\mathrm{n}=2 \mathrm{k}$ or $\mathrm{n}=2 \mathrm{k}-1$.
(d) $1+x++-\cdots+$

Ans: (d)
$111 \mathrm{~F}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}$, x in R is
(a) Increasing if $x>-1$
(b) Decreasing if $x>0$
(c) Neither increasing nor decreasing
(d) Increasing everywhere

Ans: (a)
$112 \mathrm{~F}(\mathrm{x})=\mathrm{x}-\mathrm{x}^{2}$ in x in R is
(a) F is concave upward everywhere
(b) F is concave downward everywhere
(c) Concave upward only if $x>0$
(d) Concave downward if $x>0$

Ans: (b)
$113 \mathrm{~F}(\mathrm{x})=\mathrm{x}^{6}+\mathrm{x}^{2}$, x in R is
(a) F is concave upward everywhere
(b) F is concave downward everywhere
(c) F Concave upward only if $x 0$
(d) F Concave downward if $x 0$

Ans: (a)
114 The value of
(a) 1
(b) -1
(c) $9 / 2$
(d) 0

Ans; (c)
115 The value of is
(a) 1
(b) $\log _{\mathrm{e}} 10$
(c) $\log _{10} 10$
(d) 0

Ans: (b)
$116 \quad F(x)=x^{3}-12 x+1$ has local minima at
(a) $X=2$
(b) $X=-2$
(c) $X=0$
(d) $X=-1$

Ans (b)
117 The value of $\mathrm{c} \in(0,2)$ for $f(x)=\cos x$ by Rolle's theorem
(a) 1
(b) -1
(c)
(d)

Ans: ©
$118 \mathrm{f}(\mathrm{x})=10-12 \mathrm{x}-3 \mathrm{x}^{2}-\mathrm{x}^{3}$ in x in R is
(a) Increasing everywhere
(b) Decreasing everywhere
(c) Decreasing at $x=-2$
(d) Increasing at $x=2$

Ans: (b)
$119 f(x)=x-2 \sin x, 0<x<3 \pi$, has minimum value at
(a) $\pi / 3$
(b) $2 \pi / 6$
(c) $\pi / 6$
(d) 0

Ans: (c)
$120 f(x)=x^{2}-5 x+9, x \in[1,4]$ what is value of c, by Rolle s theorem
(a) $2 / 5$
(b) $5 / 2$
(c) $-2 / 5$
(d) $-5 / 2$

Ans: (b)
121 If f is continuous at the point and curve changes from concave upward to concave downward or vice versa is called
(a) Point of inflection
(b) Maximum at a point
(c) Minimum at a point
(d) increasing

Ans: (a)
$122 \quad \mathrm{~F}(\mathrm{x})=5 \mathrm{x}^{2}-2 \mathrm{x}$ has critical point at
(a) 5
(b) $1 / 5$
(c) -5
(d) $-1 / 5$

Ans: (d)
$123 F(x)=x^{2}-8 x+5$ has critical point at
(e) 4
(f) -4
(g) 2
(h) 8

Ans 1
124 The function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is decreasing at c , if
(a) , whenever and, whenever .
(b), whenever and, whenever .
(c), whenever and, whenever.
(d) all of these

Answerl
125 Tangent of the curve of $F(x)=x^{2}+2 x+1$ is parallel to line $y=4 x+3$
(a) 2
(b) 1
(c) 4
(d) 6

Answer2
126 The function is increasing at c, if
(a), whenever and, whenever .
(b), whenever and, whenever .
(c), whenever and, whenever.
(d) none of these

Answer2

127 Let a and b be such that. Then, there exists c between a and b such that
(a)
(b)
(c)
(d) none of these

Answer1

128 Let a function f be continuous on $[a, b]$ and differentiable on (a, b). Then
(a) there exists a unique such that
(b) there exists such that
(c) there exists such that
(d) none of these

Answer3
$129=$
(a) 0
(b) 1
(c)
(d) None of these

Answer 1

130 Let a function f be continuous on $[a, b]$, differentiable on (a, b) and let $f(a) 1$ $=f(b)$. Then
(a) there exists a unique such that.
(b) there exists such that .
(c) there exists such that.
(d) none of these

Answer3
$131=$
(a) 1
(b) 0
(c) a
(d) None of these

Answer1

132 The function is decreasing at c, if
(a), whenever and, whenever .
(b), whenever and, whenever .
(c), whenever and, whenever .
(d) none of these

Answer3
133 Which of the following functions is increasing at the origin?
(a)
(b) (c)
(d)

Answer4
$134=$
(a) 2
(b) 1
(c) 0
(d) None of these
$135=$
(a) 1
(b) 0
(c)
(d) None of these

Answer 1
$136=$
(a) 0
(b) 1
(c)
(d) None of these

Answer2
137 The function is decreasing on
(a)
(b)
(c)
(d) None of these

138 The function is increasing on
(a)
(b)
(c)
(d) None of these

Answer 1
139 The function is decreasing on
(a) $(1,3)$
(b)
(c)
(d) None of these

Answer1
140 The function is increasing on
(a)
(b)
(c)
(d) None of these

Answer3
141 Which of the following functions is decreasing at the origin?
(a)
(b)
(c)
(d)

Answer1
142 The function attains its maximum value at
(a) 1
(b) -1
(c) 0
(d) None of these

142 The function attains its minimum value
(a) at exactly one point
(b) at only finitely may points
(c) at infinitely many points
(d) nowhere

Answer3
143 For a given function, it is found that. Therefore,
(a) c must be a point of local maximum of f.
(b) c must be a point of local minimum of f.
(c) c must be a point of either local maximum or local minimum of f.
(d) nothing can be said about c.

Answer3
144 The function is concave downwards
(a) only at 1
(b) over positive rational numbers only
(c) over positive irrational numbers only
(d) wherever it is defined

Answer2
145 The function is concave upwards
(a) only at the origin
(b) over negative real numbers
only
(c) over positive real numbers only
(d) everywhere

Answer4
146 A triangle with the given perimeter has maximum area if and only if it is
(a) obtuse angled
(b) isosceles
(c) right angled
(d) equilateral

Answer4
147 A rectangle with the given perimeter has maximum area if and only if it is a
(a) rhombus
(b) parallelogram
(c) square
(d) kite

Answer3
148 The function, has local maximum at
(a)
(b)
(c) 0
(d) None of these

Answer 1
149 Amongst the following, the function, which has a local minimum at the 2 origin, is
(a)
(b)
(c)
(d)

Answer4
150 Amongst the following, the function, which has a local maximum at the 2 origin, is
(a)
(b)
(c)
(d)

Answer 1

[^0]: Then f is

